

LOW TEMPERATURE PSYCHROMETRIC CHART

ENERGY EQUATIONS

Q_{Total} = Q_{Sensible} + Q_{Latent} $Q_{Total} = 4.5 \times CFM \times \triangle h (BTU/Hr)$ $Q_{Sensible} = 1.08 \times CFM \times \Delta T_{db} (BTU/Hr)$ $Q_{latent} = 0.68 \times CFM \times \triangle Grains/lb (BTU/Hr)$ $Q_{l \text{ atent}} = 4,840 \text{ x CFM x} \triangle T_{wh} (BTU/Hr)$ $MR = CFM/1,000 \times .642 \times \triangle Grains(Ib_{Water}/Hr)$ $SHR = Q_{Sensible} / (Q_{Sensible} + Q_{Latent})$

Q = Energy (BTU/Hr) $h = Enthalpy of air (BTU/lb_{Air})$ T_{db} = Sensible temperature of air (°F) T_{wb} = Wet-bulb temperature of air (°F) MR = Moisture removal rate from air (lb_{water}/Hr) SHR = Sensible Heat Ratio

FAN LAWS

If fan speed is changed in a given system, with no other system modifications:

$$CFM_2 = CFM_1 \times \frac{RPM_2}{RPM_1}$$

$$TP_2 = TP_1 \times \left(\frac{RPM_2}{RPM_1}\right)$$

$$HP_2 = HP_1 \times \left(\frac{RPM_2}{RPM_2}\right)$$

To estimate fan horsepower

$$HP = \frac{CFM \times TP}{6,356 \times EFF}$$

$$HP = \frac{HP \times 2,31}{CFM}$$

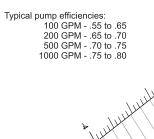
CFM = Airflow, Ft3/Min RPM = Fan Speed, Revs/Min HP = Power Input, Horsepower TP = Air Total Pressure, Inches Water TR = Air Temp. Rise, °F EFF = Fan Efficiency

Typical fan efficiencies: Forward Curved - .65 to .75 Backward Curved - .75 x .85 Axial Flow - .80 to .90

PUMP LAWS

If pump speed is changed in a given system, with no other system modifications:

$$GPM_2 = GPM_1 \times \frac{RPM_2}{RPM_1}$$


$$H_2 = H_1 \times \left(\frac{RPM_2}{RPM_1}\right)^2$$

$$HP_2 = HP_1 \times \left(\frac{RPM_2}{RPM_1}\right)^3$$

To estimate pump horsepower

$$HP = \frac{GPM \times H \times SG}{3.960 \times FFF}$$

GPM = Liquid Flow, Gals/Min RPM = Pump Speed, Revs/Min HP = Power Input, Horsepower H = Total Head of Liquid, Feet SG = Liquid Specific Gravity, Water - 1.0 EFF = Pump Efficiency

FREQUENTLY USED CONVERSION FACTORS

VOLUME

1 KW = 3,413 BTU/Hr

1 HP = 2,545 BTU/Hr

1 HP = 550 Ft-lb/Sec

1 KW = 1.34 HP

 $1 \text{ M}^3 = 35.31 \text{ Ft}^3$

POWER

 $1 \text{ M}^2 = 10.76 \text{ Ft}^2$ $1 \text{ Acre} = 43,560 \text{ Ft}^2$

 $1 \text{ Ft}^3 = 7.49 \text{ Gals}$ 1 Gal = 231 In^3 1 Gal = 3.78 Liters

ENERGY & WORK

 $1 \text{ CFM} = 1.70 \text{ M}^3/\text{Hr}$ 1 Liter/Sec = 15.9 GPM $1 \text{ M}^3/\text{Hr} = 4.41 \text{ GPM}$

DEFINITIONS OF STANDARD AIR FLOW

AREA

LENGTH

1 Meter = 3.28 Feet

1 Micron = $1 \times 10^{-6} M$

1 Inch = 2.54 cm

1 Mile = 1.61 Km

VOLUME FLOW

ENERGY FLUX

1 BTU = 1,055 Joules

1 Watt-Hr = 3.413 BTU 1 Kg Cal = 3.97 BTU

1 BTU = 778 Ft-lbs THERMAL CONDUCTIVITY

1 W/M °K = 6.93 $\frac{BTU-In}{Hr-Ft^2- °F}$ $1 BTU/Hr-Ft^2 = 3.15 W/M^2$

LATENT HEAT

WEIGHT

1 Kg = 2.205 lbs

1 lb = 7,000 Grains

1 lb = 454 Grams

1 BTU/lb = 2326 J/Ka

1 Kg Cal/Kg = 1.8 BTU/lb

1 Metric Ton = 2,205 lbs

SPECIFIC HEAT

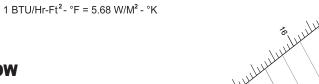
1 BTU/lb - °F = 1 Kg Cal/Kg - °K 1 BTU/lb - $^{\circ}F = 4,184 \text{ J/Kg} - ^{\circ}K$

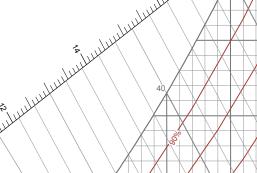
POUND OF DRY AIR

PER

HUMIDITY RATIO

PRESSURE


1 ATM = 14.696 PSI


1 ATM = 29.92 In Hg

1 Kg/cm² = 14.2 PSI

1 PSI = 6.895 KPa 1 PSI = 27.7 In WC

THERMAL CONDUCTANCE



Chart by: HANDS DOWN SOFTWARE, www.handsdownsoftware.com

DRY BULB TEMPERATURE - °F