

Plate heat exchangers technology in comparison with the shell & tube

Matteo Danese

Agenda

- 1. Air Conditioning EU Market Trends
- 2. Main Advatnages of BPHE compared to S&T
- 3. Main Advantages of S&T compared to BPHE
- 4. Chillers Overview: capacity, efficiency, technology
 - Heat Exchangers Portfolio

Air Conditioning - EU Market Trends

- Focus on Europe

EUROPE

- * A/C: Push for Low GWP Refrigerants (F-gas) and higher efficiencies (ECO Design)
- *** A/C**: Multi-scroll compressors ready for R32
- **A/C**: Replacement of S&T with BPHE for multi-scroll >600kW
- *** A/C**: Replacement of S&T with BPHE for screw direct expansion (DX)

- 1. Footprint
- 2. Efficiency
- 3. Refrigerant Charge
- 4. Heat Recovery Option
- 5. Logistic and Transport

EUROPE

A/C: Push for Low GWP Refrigerants (F-gas) and higher efficiencies (ECO Design)

AC: Multi-scroll compressors ready for R32

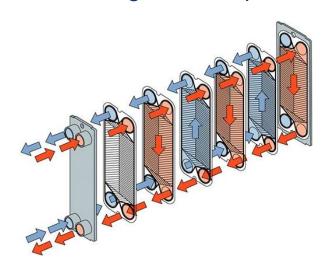
1. Footprint

Brazed Plates Heat Exchanges (BPHE)

- Parallelepiped shape
- Any orientation possible in the chiller
- Flexibility on piping arrangment and architecture
- Piping arrangement replicable for more sizes
- Room for additional components (hydraulic kit)

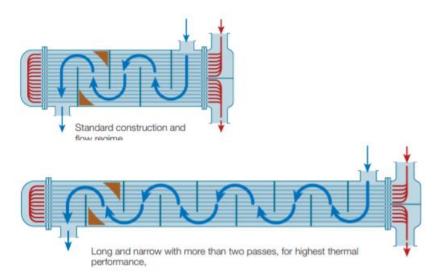
Shell and Tubes (S&T)

- Cilindrical shape
- Length is dominant: 'parallel' to the chiller lenght
- Piping layout determined by need to fit S&T
- Different piping arrangment for different sizes
- No space for additional components



2. Efficiency

Brazed Plates Heat Exchanges (BPHE)


- Modularity: add plates to increase efficiency
- High turbolence: manage variable flow at part load
- Asymmetric design: lower dp_w

A/C: Push for Low GWP Refrigerants (F-gas) and higher efficiencies (ECO Design)

Shell and Tubes (S&T)

- Increase length for higher efficiency
- Lower turbolence in S&T

Every % efficiency increase is more costly in S&T rather than BPHE. BPHE: easier to comply with ECO Design rules

3. Refrigerant charge; 4. Heat Recovery Option; 5. Logistic and Transport

3. Refrigerant Charge

BPHE comes with lower ref. volume, reducing the refrigerant charge.

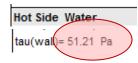
4. Heat Recovery Option

BPHEs, thanks to the smaller footprint, allow room for heat recovery option (DSPH)

5. Logistic and Trasport

BPHEs are cheaper and easier to trasport and stock (lower space usage)

Main Advantages of S&T compared to BPHE


S&T can be inspected, differently than BPHE. How to overcome this in BPHE?

- Maximum allowed particle size provided
- Technical water and closed loops used in most chillers
- Minimum flowrate
 - Avoids fouling
 - Avoids local corrosion
 - Avoids low performance

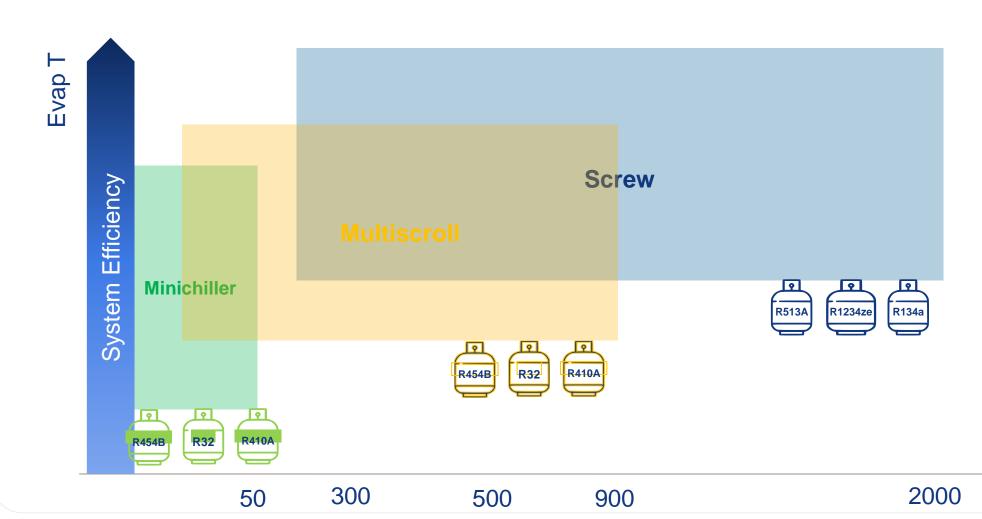
Reynolds Number (Re)

Shear Stress (tau)

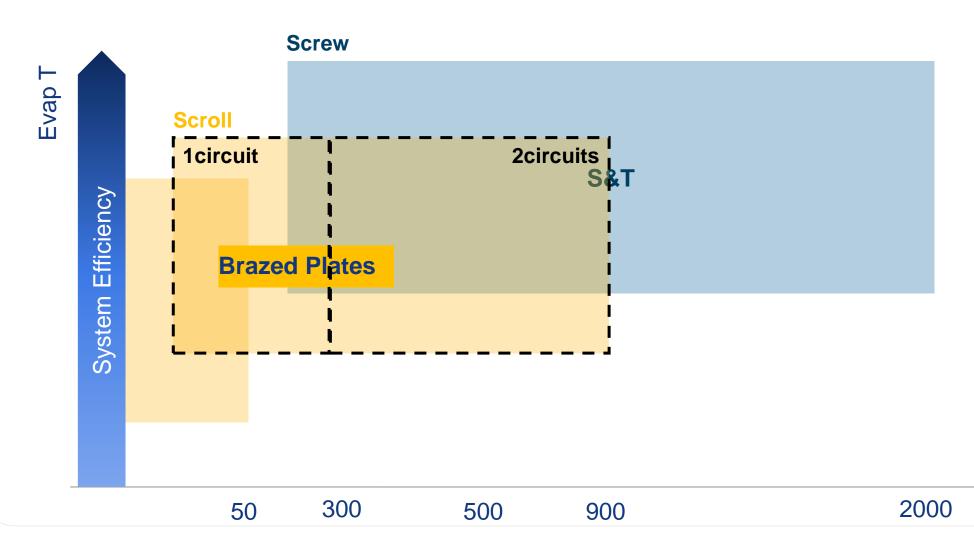
Main Advantages of S&T compared to BPHE

S&T have a more resistant design to ice formation (freezing). How to overcome this in BPHE?

Ice safe design


- Freezing can start locally in low flowrate/velocity zones in the water channel
- Channel plate design can be optimized to eliminate these low velocity zones

Anti freezing guidelines


 General guidelines on water flow and Wall Temperature must be considered in case of continuous low temperature level operations

Capacity [kW]

Capacity [kW]

- Heat Exchangers Portolio: Scroll

- Full Load Design: Te > 4°C @ Dp_w < 35kPa up to 900kW</p>
- Part Load with Te > 5°C
- > Same item can be used with multiple refrigerants: standardization

50 300 500 900 2000

- Heat Exchangers Portfolio: Scroll ACK540DQ

PressureSecure → ACK540 Version: 49bar @150°C

REFuture → Multi-refrigerant Platform (R32, R410A, R454B, etc)

DynaStatic[™] → Flexible distr. system suitable for low GWP ref.

IceSafe → Controlled freezing design, Antifreezing Guidelines

FlexFlow™ → Asymmetric channel plates, best in class water PD

- Heat Exchangers Portfolio: Screw

Screw Evap Single Circuit **Double Circuit** Efficiency AC500EQ AC540DQ & AC1000DQ System Dedicated Distribution System ➤ AC500EQ: Te 3,5÷4°C @ Dp_w < 25kPa up to 300kW ➤ AC1000DQ: Te 3,5÷4°C @ Dp_w < 20kPa up to 700kW Capacity [kW] 300 2000 50 500 700

