Lets talk about Industrial Ammonia Heat Pumps

Superior Energy Efficiency with Alfa Laval Plate heat exchangers
Low value heat sources
- Reason for using Heat Pumps

Why Heat Pumps?

Industrial Heat pumps makes it possible to use waste or natural low temperature heat for space or industrial process heating.

Typical heat sources are sea water, ground water or waste heat from industries, refrigeration plants and data centers mainly used for:

Industrial Process
They are connected to dehumidification, distillation and evaporation processes, but also for water heating and combined heating and cooling.

District heating
Heat pumps are successfully connected to district heating systems or in combined district heating and cooling systems.

Commercial buildings
Heat pumps are connected to water loops (hydronic) for heat and cold distribution.
Why Ammonia

- Highly efficient future proof refrigerant

Why Ammonia:
• GWP=0
• ODP=0
• High volumetric capacity
• More effective and cheaper than synthetic alternatives
• Lowest total lifetime cost
• Known for centuries as a refrigerant and will stay

Remember:
• Classified as Fluid Group 1 in PED (toxic, corrosive, and moderately flammable), so special legal requirements may apply
• No ATEX requirements for normal ammonia plants except for machine-room ventilation in special cases
• Copper and its alloys are not allowed as material
• Oil draining required
Industrial Heat Pump-example of application
- Recovering waste heat from a datacentre feeding a district heating network

While being cooled, a data centre serves as low temperature ~30 °C heat source for an industrial ammonia heat pump
Heat Pump Impact – How Alfa Laval semi welded plate heat exchanger increases the COP
Efficiency (COP) of the Heatpump

Heat source - low value heat

Ammonia Separator

Compressor

Valve

Electricity

Condenser

Flooded ammonia evaporator

Heating supply

Efficiency of the heat pump = COP
Coefficient of performance

\[
\text{COP} = \frac{\text{Heat Energy supplied (kW)}}{\text{Electricity Power Consumed (kW)}}
\]
In general it is possible to obtain 2K closer approach than with other heat exchanger technologies at comparable size and cost

- every K higher Tevap (evaporation temperature) saves 3-6% of the heat pump power consumption.
Condenser with integrated Subcooling
- SWPHE with Subcoolcondense™ is compact and efficient
T10 EW Condenser with integrated Subcooling
- Enables high energy efficiency and a compact installation

Subcoolcondense™

- T10- EW with this feature allows Condensing, Desuperheating, and Subcooling in same plate heat exchanger with the benefits of:
 - Enabling high efficiency (COP) of the Heat Pump
 - Avoiding the use multiple heat exchangers on hot side
New features to increase efficiency

CurveFlow™ distribution area
- Fully utilizes available surface area.
- Provides perfect distribution inside channel for best heat transfer and surface stays cleaner.

OmegaPort™ noncircular port holes
- Better distribution of media
- Pressure drop better utilized for heat transfer.
References
District heating - heat recovered from sea and wastewater

– Joint venture of HOFOR, CTR and VEKS for Copenhagen City

Inaugurated in April 2019
5 MW full scale ammonia heat pump test
Servicing 1100 households
Heat sources: seawater and wastewater
Power source: wind mills at sea
COP = 3.2

Alfa Laval supplied:

- Flooded Ammonia Evaporators for heat recovery from sea-/wastewater 4°C → 0.5°C: Alfa Laval semi-welded TK20-BWFG
- Condensers delivering hot water from 50°C → 80°C: Alfa Laval semi-welded MK15-BWFT and Alfa Laval semi-welded TK20-BWFX
- Sub-cooling duties: Alfa Laval ANH76 and Alfa Laval ANXP52

Environmental friendly District Heating from sea and sewage water with clean electricity
District heating in Broager DK
4 MW Ground water heat pump started operation end 2016

End User: Broager District heating company
System builder: ICS - Industrial Cooling system a/s Consultant: PlanEnergi
Purpose: Using 250 m deep ground water at 9 °C as heat source delivering district heating supply of hot water at 70 °C. The total capacity of 4 MW covers approximately ¾ of the heating need for Broager or about 18,000 MWh/year.
Refrigerant: Ammonia
Alfa Laval supplied: Semi Welded Plate Heat exchangers as evaporators cooling/recovering the ground water heat from 9° C to 2° C evaporating ammonia of the heat pump at 0° C
COP Heat pump = 4,1
Semi Welded Plate Heat Exchangers
- For Ammonia Heat pumps

Major benefits
- High efficiency.
- Space saving
- Minimizes Ammonia charge
- Reliable operation