The automatic filters, T150D, T280D and X280D, are designed specifically for full-flow filtering of lubricating oils for trunk piston and crosshead engines.

Unique features

- Robust disc-type filter elements.
- Continuous backflushing.
- Filtered oil drives the backflushing process.
- Constant pressure drop across the filter.
- Compact and lightweight.
- Cleaning of backflushed oil by refiltration in the diversion chamber before return to the engine sump.
- Removal of particles collected from the system at the filter.

Key benefits

- Robust design reduces risk of filter element cracking.
- Continuous backflushing significantly prevents adhesion of retained solids to filter surfaces, which results in:
 - No manual cleaning of filter elements.
 - Low and constant pressure drop across the filter elements, which further reduces the risk of cracking.
- Robust filter elements and continuous backflushing ensure safe protection of the diesel engine, with normally more than 12,000 operating hours between cleaning and inspection of the filters.
- Use of filtered oil for backflushing process eliminates the need for external power supply and compressed air.
- Constant pressure drop across the filter, combined with the pressure drop indicator, facilitates detection of malfunctions in the lubricating oil system.
- Easy to install and to retrofit as an upgrade to existing installations.
- No need for a sludge treatment unit (consumable item or manual cleaning system). The diversion chamber collects the particles backflushed from the full-flow chamber and clean itself to concentrate sludge, acting as an automatic and maintenance-free sludge treatment system.
Diesel engine protection

The separator is installed in the bypass system. Its function is the removal of harmful contaminants (solid particles and water) from the lubricating oil system.

The filter is installed in the full-flow system as close to the engine as possible to stop harmful solid particles that may not have been removed by the separator. These particles can then be removed from the system at the drain valve on the filters.

Design

Two types of filter elements, full-flow (Figure 1) and diversion elements, are assembled into a disc stack. The filter elements comprise a filter frame and filter screen. The elements are divided into sections by ribs.

The discs, with sleeve, guide rods, springs and flanges, are mounted over the distributor to form the filtering unit. The sections, divided by the ribs, form twelve independent filtering columns in the full-flow and in the diversion chambers.
Operating principle

The unfiltered oil entering the filter is fed by the distributor to 11 of the 12 full-flow filtering columns. Solids are collected on the filter surface and the filtered oil flows to the engine. Previously collected solids are removed in the twelfth column by backflushing with a small amount of the filtered oil and taken through a passage in the distributor to the diversion chamber.

The distributor, which is driven by the hydraulic motor on top of the filter housing, rotates at regular intervals to feed oil for filtration in 11 columns and to backflush in the twelfth. In this way, all the columns are backflushed once per full rotation of the distributor, which corresponds to every one to three minutes.

Backflushed oil is filtered in 11 of the 12 columns. Solids from the backflushed oil are directed to the diversion chamber. Cleaned backflushed oil is then led back to the lubricating oil sump. At the same time backflushing of the diversion chamber by clean oil takes place in the twelfth column and solids settle to the bottom of the diversion chamber, where they are discharged periodically through the drain cock.

The pressure drop indicator connected between the inlet and outlet of the full-flow chamber provides a reading and signals an alarm condition if for any reason the pressure reaches the alarm level. This indicates that there is a problem in the lubricating oil system.

The driving force for the automatic backflushing is the pressure difference between the clean oil outlet (P2) and the backflushed oil outlet (P3) of the filter. A flow sheet illustrating the pressures, flows and capacities is shown in Figure 4.

The pressure drop indicator, drain cock, inspection covers and counter flanges are provided as ancillary equipment. Options exist for additional features, such as an automatic timer drain valve and magnetic plates installed on the inlet housing.

Key:

- QP = Lubricating oil pump capacity
- Q1 = Maximum capacity of the filter
- QE = Lubricating oil flow to the engine
- Q3 = Flow of backflushed cleaned oil
- P2 = Clean oil outlet pressure
- P3 = Backflushed oil outlet pressure

Note: When selecting filter Q1 must be > QP
QE = QP - 0.03 to 0.05 x Q1

Figure 4. Protector automatic lubricating oil filter showing pressure, flow and capacity.
Guideline to overall dimensions
Depending on the surface area and number of filter elements required for your application, the number of housings will vary, and hence the overall size of the filter will be different.

Filtration fineness
This can be defined depending on diesel engine requirements and the specific application.

Installation
All Alfa Laval automatic lubricating oil filters are designed for installation in the engine room. Counter flanges are according to DIN standards (JIS as option).

Other Alfa Laval filtration products
Alfa Laval also manufactures filters for other engine room applications, such as automatic fuel oil filters, and manual indicator and bypass filters.

After-sales support
Replacement components and after-sales services are provided through a network of Alfa Laval subsidiaries and representatives worldwide, including Marine Service Centres in all major ports.

Dimensions

<table>
<thead>
<tr>
<th>Lubricating oil flow (m³/h)</th>
<th>Crosshead</th>
<th>Trunk piston</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height x Length x Width (mm)</td>
<td></td>
</tr>
<tr>
<td>40–150</td>
<td>20–100</td>
<td>750 x 450 x 450</td>
</tr>
<tr>
<td>150–250</td>
<td>100–220</td>
<td>1300 x 500 x 500</td>
</tr>
<tr>
<td>250–500</td>
<td>220–450</td>
<td>1300 x 1050 x 500</td>
</tr>
<tr>
<td>500–800</td>
<td>450–700</td>
<td>1300 x 1500 x 500</td>
</tr>
<tr>
<td>800–1100</td>
<td>–</td>
<td>1300 x 2100 x 500</td>
</tr>
</tbody>
</table>

Technical documentation
Complete information and documentation for the main components and the installation, operation and maintenance of the filter is contained in the Instruction Book that accompanies delivery of each Alfa Laval filter. Your local Alfa Laval company will be able to provide more details on the application and sizing of Alfa Laval automatic filters.

Technical data

<table>
<thead>
<tr>
<th></th>
<th>Crosshead X280D</th>
<th>Trunk piston T150D, T280D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal filter outlet pressure</td>
<td>2–3 bar (P2 norm)</td>
<td>3.5–6 bar (P2 norm)</td>
</tr>
<tr>
<td>Min. filter outlet pressure</td>
<td>1.4 bar</td>
<td>3 bar</td>
</tr>
<tr>
<td>Max. filter inlet pressure</td>
<td>12 bar</td>
<td>12 bar</td>
</tr>
<tr>
<td>Test pressure</td>
<td>24 bar</td>
<td>24 bar</td>
</tr>
<tr>
<td>Max. viscosity in filter at normal operation</td>
<td>130 cSt</td>
<td>75 cSt</td>
</tr>
<tr>
<td>Max. temperature in the filter</td>
<td>100°C</td>
<td>100°C</td>
</tr>
<tr>
<td>Alarm Δp</td>
<td>0.9 bar</td>
<td>0.8 bar</td>
</tr>
<tr>
<td>Backflushing flow</td>
<td>3% of filter inlet flow</td>
<td>3–5% of filter inlet flow</td>
</tr>
<tr>
<td>Housing material</td>
<td>Nodular cast iron</td>
<td>Nodular cast iron</td>
</tr>
<tr>
<td>Filter screen material</td>
<td>Stainless steel</td>
<td>Stainless steel</td>
</tr>
</tbody>
</table>

EMD00048EN 0606
Alfa Laval reserves the right to change specifications without prior notification.

How to contact Alfa Laval
Up-to-date Alfa Laval contact details for all countries are always available on our website at www.alfalaval.com